DIS METALLURGICAL SERVICE

Method of Eliminating the Heat

Affected Zone in a Welded Crankshaft

DISFOR Process

DUSAN MILICEVIC M.Sc.

President & Founder

Phone: (630) 324-6678

Email:

dismetservice@gmail.com

Who we are?

- DIS Metallurgical Service is a family owned company
- Dusan Milicevic, President & Founder
- We have US Patent(s):
- "Method of eliminating the heat affected zone in a welded crankshaft", US 9,095,891 - August 2015
- "Method of eliminating the heat affected zone in a welded article", US 9,254,518 - January 2016

What we offer

- We offer US Patent(s):
 - "Method of eliminating the heat affected zone in a welded crankshaft", US 9,095,891 - August 2015
 - "Method of eliminating the heat affected zone in a welded article", US 9,254,518 - January 2016
- DISFOR is the method described within our patents.
- DISFOR answers the question of how to eliminate HAZ in a welded crankshaft and provide same or better metallurgical properties as a solid crankshaft produced by forging.
- The application describes implementation of full scale production.
- Proof of concept has been completed.

Proof of Concept

- AISI 4340 was the material used in experiments.
- Crankshaft journals exhibited the following properties.
- Welded, quench, tempered: impact of 30 ft-lb at -20°F.
- Welded, DISFOR treated, quench, tempered: impact 58 ft-lb at -20°F.
- Welded, DISFOR treated ,quench, tempered: had the same mechanical properties as a solid forged crankshaft journal.
- Microstructure of welded, DISFOR treated, quench, tempered journal was the same/similar to the microstructure of a solid crankshaft having same thermal and forming history.

Proof of Concept (cont.)

- There is evidence of HAZ in welded, quench and tempered journal.
- There is no evidence of HAZ in welded, DISFOR treated, quench and tempered journal.
- Welded DISFOR treated crankshafts have continuous grain flow CGF.
- All impact, mechanical and microstructural testing were completed by an independent metallurgical lab.
- All welding and DISFOR related processes were completed by US companies.

What are we looking for?

- We are looking for an investor or partner
- To provide funding for commercialization of our innovative idea!!!
- We need to make crankshaft prototypes using our DISFOR method and test against state of the art forged crankshafts.
- Pilot production.
- Full scale industrial production.

The goal of innovation

- Provide significantly lower investment and manufacturing cost for crankshafts.
- Maintain the metallurgical quality of the crankshafts the same as when forged using existing processes.
- Replace existing crankshaft forging processes with DISFOR method.
- Heat treatment and machining is out of the scope of the innovation because they are the same as for current manufacturing process.

The current forging process

- Production line consists of up to 3 presses plus trimming press.
- Forging presses up to 18000T, up to 550 lbs crankshaft. (1)
- Forging line needs up to 2000T trimming press.
- Every 50 sec one shaft is produced.
- Big block Chevy engine 5.5" stroke cost \$1,791.19 (2)
- High performance crankshafts cost from \$300-\$1700 (4), (5)
- US crankshaft consumption is about \$12-15M per year based on automobile production.

What is DISFOR process

- DISFOR is an innovative method which completely eliminates HAZ in welded crankshafts or other welded products.
- DISFOR is the process described in DIS Metallurgical Service patent(s);
 - "Method of eliminating the heat affected zone in a welded crankshaft", US 9,095,891 - August 2015
 - "Method of eliminating the heat affected zone in a welded article", US 9,254,518 - January 2016

Example of current crankshaft forging method (1)

 Large flash which needs to be trimmed from crankshaft

How to make the crankshaft using DISFOR process without large presses and without trimming

- All you need is crankshaft arm (link) + DISFOR PROCESS + induction heater.
- Link can be forged or machined from the billet

To make this

 5 throw crankshaft, shape of this crankshaft is similar to the crankshafts produced by OEM

Required equipment to execute DISFOR process

- Equipment requires less that 50% of current investment in crankshaft production line.
- Relatively small forging press to forge links, friction welder, DISFOR Process and induction heater are required to make one crankshaft.
- Outside vendor can forge links, therefore press may not be necessary.

Processes involved to make crankshafts

- Forging only links using existing forging methods.
- Connecting two links into throw by friction welding and applying DISFOR process to eliminate HAZ in throw journals.
- Connecting two throws by welding two sections of the main journals and eliminating HAZ using DISFOR process.
- Heat treating.
- Rough machining.

Investment cost

- Only \$0.5M tooling cost to make 60000 crankshafts.
- After production starts up to \$30 million in sales.
- Return on Investment ROI > 50 % higher.
- Productivity (2-3 shafts per minute versus 1 in 50 sec).
- Significantly lower upfront investment.
- Low risk
- DISFOR method is suitable for any size of crankshaft.
- Goal is to target high performance crankshafts.

Next step

- Making several Prototypes.
- Testing Prototypes against current state of the art forged crankshafts.
- Commercialization pilot plant production.

Conclusions

DISFOR Process provides:

- Much lower investment cost.
- Lower than now operational cost.
- Better than now productivity.
- Better or same quality of crankshafts.
- DISFOR Process is suitable for manufacturing of any size crankshaft.
- DISFOR Process provides 10-20 % input materials savings due to absence of trimming operation.

QUESTIONS?

DIS METALLURGICAL SERVICE

metallurgical consulting and innovation

Dusan Milicevic, M.Sc.

President & Founder

phone: 630.324.6678

email: dismetservice@gmail.com

url: http://www.dismetservice.com

DIS Metallurgical Service 2301 Oakmont Way Darien, IL 60561 630.324.6678

References

- 1. www.forging.@schuller.com
- 2. WWW.cnc-motorsports.com
- http://www.google.com/imgres?imgurl=http://static.traderscity.com/board/userpix14/4193-crankshaft-line-ton-ajax-mechanical-forging-presshttp://www.summitracing.com/search/Part-Typ
- 4. http://www.summitracing.com/search/Part-Typ e/Crankshafts/?autoview=SKU&mbid=514179&pag e=7
- 5. http://www.coasthigh.com/chevy-big-block-forge d-4340-crankshafts-s/1632.htm